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Vibrational energy relaxation (VER) of solvated polyatomic molecules can occur via different pathways. In
this paper, we address the question of whether treating VERclassically or quantum-mechanicallycan lead to
different predictions with regard to the preferred pathway. To this end, we consider the relaxation of the
singly excited asymmetric stretch of a rigid, symmetrical, and linear triatomic molecule (A-B-A) in a monatomic
liquid. In this case, VER can occur either directly to the ground state or indirectly via intramolecular vibrational
relaxation (IVR) to the symmetric stretch. We have calculated the rates of these two different VER pathways
via classical mechanics and the linearized semiclassical (LSC) method. When the mass of the terminal A
atoms is significantly larger than that of the central B atom, we find that LSC points to intermolecular VER
as the preferred pathway, whereas the classical treatment points to IVR. The origin of this trend reversal
appears to be purely quantum-mechanical and can be traced back to the significantly weaker quantum
enhancement of solvent-assisted IVR in comparison to that of intermolecular VER.

I. Introduction

Vibrational energy relaxation (VER) is the fundamental
process by which an excited vibrational mode releases its excess
energy to other, intermolecular and/or intramolecular, degrees
of freedom (DOF). Virtually all chemical phenomena in the
condensed phase involve VER processes. The measurement and
calculation of VER rates in such systems have therefore received
much attention over the last few decades.1-79

In recent experimental studies of VER, attention has been
shifting to polyatomic solute/solvent systems.43-79 The main new
feature of VER in polyatomic molecules, as opposed to diatomic
molecules, has to do with the fact that it can occur via different
intramolecular and/or intermolecular pathways. The case of
small polyatomic molecules (3-4 atoms) is particularly attrac-
tive because the modes that define the vibrational spectrum are
more or less isolated and the number of VER pathways is
relatively small.

The wealth of detailed experimental information on VER in
polyatomic solute/solvent systems has motivated many theoreti-
cal studies that attempted to provide a molecular interpretation
of the observed time scales and pathways in such systems.70-79

Those theoretical studies have been based mostly on the
Landau-Teller formula, which puts the VER rate constant in
terms of the Fourier transform (FT), evaluated at a frequency
corresponding to the energy gap between a pair of vibrational
states, of a certain correlation function involving the forces
exerted on the solute by the solvent.27,80Most previous studies
of VER in polyatomic systems implemented this formalism
within the framework of classical mechanics. However, replac-
ing the quantum-mechanical force-force correlation function
(FFCF) by its classical counterpart is not necessarily justified

in cases where the energy gap between the vibrational levels is
larger thankBT. Indeed, discrepancies by many orders of
magnitude have been reported between experimentally measured
VER rates and predictions based on classical molecular dynam-
ics simulations.81-86 At the same time, a numerically exact
calculation of the quantum-mechanical FFCF in liquid solutions
is not feasible. Several previous studies of VER in polyatomic
systems have employed quantum correction factors (QCFs) in
order to bypass this problem.70,74,77,87Unfortunately, the choice
of QCF is often rather ad-hoc and estimates obtained from
different QCFs can differ by orders of magnitude, particularly
when high-frequency vibrations are involved.

We have recently introduced a new approach for calculating
VER rate constants, which is based on estimating the quantum-
mechanical FFCF via the linearized semiclassical (LSC) ap-
proximation. The approximation involves linearizing the forward-
backward path-integral action in the exact quantum-mechanical
FFCF, with respect to the difference between the forward and
backward paths.88 This leads to a classical-like expression for
the FFCF, where the classical variables are replaced by certain
Wigner transforms of the corresponding quantum-mechanical
operators. We have also introduced a local harmonic ap-
proximation (LHA) in order to evaluate these Wigner transforms
in many-body anharmonic systems.83 In the remainder of this
paper, we will refer to the method that results from the
combination of the LSC and LHA approximations as LHA-
LSC.

In previous work, we have demonstrated the accuracy of the
LHA-LSC method on several nontrivial benchmark problems.83

The feasibility of applying the method to molecular liquids was
also demonstrated via applications to neat liquid oxygen, neat
liquid nitrogen, and liquid oxygen/argon mixtures.83-85 In all
of these cases, we found the LHA-LSC-based predictions to be* Corresponding author. E-mail: eitan@umich.edu.
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in good agreement with the experimental results. This repre-
sented a dramatic improvement in comparison to the classical
predictions, which are smaller than the experimental results by
many orders of magnitude.

In a more recent paper, we reported the first application of
the LHA-LSC method for calculating VER rates in a polyatomic
system. The latter corresponded to a rigid, symmetrical, and
linear triatomic molecule (A-B-A) in a monatomic liquid.86 In
this case, VER from the first excited state of the asymmetric
stretch can occur either directly to the ground state or indirectly
via intramolecular vibrational relaxation (IVR) to the first
excited state of the symmetric stretch. The results reported in
ref 86 gave rise to the following observations: (1) Generally
speaking, VER rates predicted by the LSC method were faster
than the classical ones. (2) The quantum enhancement of
intermolecular VER was significantly stronger than that of IVR.
(3) In cases where the A and B atoms were similar in mass, we
found that while the classical VER rate in argon was faster than
that in neon, at the same thermodynamic point in terms of
reduced LJ units, the opposite trend was observed in the case
of the LSC-based VER rates.

At the same time,IVR was obserVed to be the preferred VER
pathway of the excited asymmetric stretch, regardless of which
method was used to calculate the rates (LHA-LSC or fully
classical). The question addressed in the present paper is
whether there could be cases where the preferred VER pathway
predicted via the LHA-LSC method is different from that
predicted by the classical treatment? To this end, we calculated
the rates of the above-mentioned two different VER pathways
in cases involving terminalA atoms that are increasingly more
massive than the central B atom. This was motivated by the
fact that the gap between the asymmetric stretch frequency and
the IVR frequency becomes smaller with the increasing mass
of the terminal A atom. Thus, the fact that the quantum rate
enhancement of intermolecular VER is larger than that of IVR
may makes it possible for the former to become the dominant
VER pathway.

The remainder of this paper is organized as follows. The
model Hamiltonian, general VER theory, and LHA-LSC method
are outlined in Section II. The simulation parameters and
techniques are outlined in Section III. The simulation results
are reported and discussed in Section IV. We conclude in
Section V.

II. Theory

In this section, we restrict ourselves to a brief outline of the
model and VER theory (a more detailed discussion of these
issues is available in ref 86). We consider arigid, linear, and
symmetric triatomic molecule A-B-A with the following
vibrational Hamiltonian:

Here, (qs,ps) and (qas,pas) are thesymmetricstretch andasym-
metric stretch mass-weighted normal-mode coordinates and
momenta, respectively.ωs and ωas are the corresponding
frequencies, explicitly given by

where,κ is the A-B bond spring constant andM ) 2mA + mB

is the molecular mass. It should be noted that

such thatωas > ωs. The vibrational energy levels are given by

with ns, nas ) 0,1,2,... and such thatHs|ns, nas〉 ) Ens,nas|ns, nas〉.
The solvent is assumed to be monatomic. The solvent-

solvent interactions and the interactions between the solvent
atoms and the three sites of the triatomic solute are described
in terms of pair potentials. In actual simulations, we have
assumed that all of these pair potentials are of the Lennard-
Jones (LJ) type. The overall solute+ solvent Hamiltonian is
assumed to be given in the following form:

Here,Hb is the Hamiltonian of the non-vibrational DOF,q )
(qs,qas), and F‚q + qT‚G‚q is the coupling between the
vibrational modes and non-vibrational DOF. It should be noted
that the coupling includes terms up to second order inq. Explicit
expressions for the matrix elements ofF andG can be found
in ref 86.

Starting at the first excited-state of theasymmetricstretch,
|0,1〉, VER can follow one of two pathways:

1. Direct VER to the|0,0〉 state with the rate constant

where

Here,Zb ) Tr(e-âHb) andδFas ) Fas - Zb
-1Tr(e-âHbFas).

2. IVR to the|1,0〉 state with the rate constant

whereωivr ) ωas - ωs, and

This process is followed by direct VER from the|1,0〉 state to
the |0,0〉 state with the rate constant

where

Finally, we list below the expressions used for calculating
the correlation functions,Cs(t), Cas(t), and Civr(t) within the
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∫-∞

∞
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ks ) 1
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∫-∞

∞
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framework of the LHA-LSC method (a detailed derivation of
these results was provided in ref 86):

Here, {Pn
(k)} are mass-weighted normal-mode momenta, as

obtained from the expansion ofHb to second order aroundQ0

(the LHA), andR(j) ) Ω(j)coth[âpΩ(j)/2]/p, where{(Ω(k))2} are
the eigenvalues of the corresponding Hessian matrix. (Qt

(Cl),
Pt

(Cl)) correspond to the classically propagated coordinates and
momenta of the non-vibrational DOF, with the initial conditions
(Q0, P0). The termsDas(Q0, Pn,0), Ds(Q0, Pn,0), andDs,as(Q0,
Pn,0) represent quantum nonlocality and vanish at the classical
limit (explicit expressions for these terms can be found in ref
84). Another quantum-mechanical effect is introduced by the
fact that the initial sampling of the positions and momenta is
nonclassical. More specifically, the initial sampling of the
positions is based on the exact quantum-mechanical position
probability density,〈Q0|e-âHb|Q0〉/Zb, whereas the initial sam-
pling of the momenta is based on the nonclassical probability
density∏j)1

N (1/(R(j)πp2))1/2 exp[-((Pn,0
(j) )2)/(p2R(j))].

III. Model Parameters and Simulation Techniques

Classical and LHA-LSC-based calculations ofks, kas, andkivr

were performed for three different solute molecules. The central
B atom was assumed to have the mass of carbon, whereas the
terminal A atoms were assumed to have the masses of oxygen,
sulfur, or selenium. We will refer to these different triatomic
solutes as CO2, CS2, and CSe2 throughout the remainder of this
paper. However, it should be emphasized that we do not expect
our model to provide a realistic description of VER in the
corresponding real molecules. The solvent is assumed to be
monatomic and corresponds to either liquid argon or liquid neon
at the same thermodynamic point in terms of reduced LJ units
(T * ) kBT/ε ) 0.8 andF* ) Fσ3 ) 0.85, whereT andF are the
actual temperature and density andε and σ are the usual LJ
parameters). The model and simulation parameters are given
in Table 1. The vibrational energy level diagrams for CO2, CS2,
and CSe2 are also drawn to scale in Figure 1, where it can be
seen thatωas decreaseswith increasing mass of the terminal
atoms. It should be noted that the results for CO2 in liquid argon

and in liquid neon have already been reported in ref 86 and are
only reproduced here for the sake of completeness.

The LJ parameters for the solvent-solute interaction were
obtained via the Lorentz-Berthelot mixing rules, withσC )
0.335 nm,σO ) 0.295 nm,σS ) 0.352 nm,σSe ) 0.36 nm,σAr

) 0.3054 nm,σNe ) 0.272 nm,εC/kB ) 51.12 K,εO/kB ) 61.6
K, εS/kB ) 183 K, εSe/kB ) 183 K, εAr/kB ) 117.7 K, andεNe/
kB ) 47 K.89,90 It should be noted that we have assumed that
the Se-Se interaction strength is similar to the S-S interaction
strength,91 and that as a resultεSe≈ εS. The values of the A-B
bond length,re, andωas for CO2 were adopted from ref 92, and
the corresponding value ofωs was calculated with the help of
eq 3. The values ofre andωs for CS2 were adopted from ref 93
and the corresponding value ofωaswas calculated with the help
of eq 3. The value ofre for CSe2 was adopted from ref 94, and
the corresponding values ofωs and ωas were calculated from
the value of 2ωs + ωas ) 2031 cm-1 (cf. ref 94) and eq 3. The
above values ofωs andωas were also found to be within∼100
cm-1 of these calculated for the isolated molecules via DFT.

The simulation procedures used are the same as these
described in ref 86 for CO2 in argon and neon. A cubical
simulation cell with a single triatomic solute and 105 solvent
atoms was used. For the classical simulations, the system was
equilibrated via the velocity rescaling method and propagated
in time via the velocity Verlet method.89 Classical simulations
on the CSe2/Ne system were started by replacing the CO2

molecule by CSe2 in an equilibrium configuration of the CO2/

Cas(t) ≈ ∫dQ0

〈Q0|e-âHb|Q0〉

Zb

∫dPn,0∏
j)1

N ( 1

R(j)πp2)1/2

exp[-
(Pn,0

(j) )2

p2R(j) ] [δFas(Q0) + Das(Q0, Pn,0)]δFas(Qt
(Cl)) (12)

Cs(t) ≈ ∫dQ0

〈Q0|e-âHb|Q0〉

Zb

∫dPn,0∏
j)1

N ( 1

R(j)πp2)1/2

exp[-
(Pn,0

(j) )2

p2R(j) ] [δFs(Q0) + Ds(Q0, Pn,0)] δFs(Qt
(Cl), Pt

(Cl))

(13)

Civr(t) ≈ ∫dQ0

〈Q0|e-âHb|Q0〉

Zb

∫dPn,0∏
j)1

N ( 1

R(j)πp2)1/2

exp[-
(Pn,0

(j) )2

p2R(j) ] [δGs,as(Q0) + Ds,as(Q0, Pn,0)]δGs,as(Qt
(Cl))

(14)

TABLE 1: Model and Simulation Parametersa

model CO2/Ar CO2/Ne CS2/Ar CS2/Ne CSe2/Ar CSe2/Ne

re (Å) 1.16 1.16 1.56 1.56 1.71 1.71
mA (amu) 16.0 16.0 32.0 32.0 79.0 79.0
mB (amu) 12.0 12.0 12.0 12.0 12.0 12.0
ωas/2πc (cm-1) 2400 2400 1686 1686 1326 1326
ωs/2πc (cm-1) 1253 1253 670 670 352 352
ωivr/2πc (cm-1) 1147 1147 1016 1016 974 974

εs/kB (K) 117.7 47.0 117.7 47.0 117.7 47.0
σs (Å) 3.504 2.72 3.504 2.72 3.504 2.72
εA/kB (K) 85.1 53.8 146.8 92.7 146.8 92.7
σA (Å) 3.23 2.84 3.512 3.12 3.552 3.16
εB/kB (K) 77.6 49.1 77.6 49.1 77.6 49.1
σB (Å) 3.43 3.04 3.43 3.04 3.43 3.04
T (K) 94.16 37.6 94.16 37.6 94.16 37.6
F (nm-3) 19.76 42.24 19.76 42.24 19.76 42.24
time step (fs) 4.0 3.0 4.0 3.0 4.0 3.0

a All simulations were performed with one triatomic solute and 105
solvent atoms in the simulation box.

Figure 1. Vibrational energy level diagrams for CO2, CS2, and CSe2
(drawn to scale). It should be noted thatωas decreasesas decreases
with increasing mass of the terminal atoms. Also shown is a schematic
view of the VER pathways considered in this paper.
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Ne system. This was followed by equilibration over 15 ns. A
similar procedure was used for the classical simulation of the
CSe2/Ar, CS2/Ar and CS2/Ne systems (except for the fact that
equilibration of the latter two systems was started at an
equilibrium configuration of CSe2 in the corresponding solvent).

The equilibration period was followed by a calculation of
the classical correlations functionsCs(t), Cas(t), andCivr(t) by
averaging over (4- 10)× 103 trajectories, each with 5000 time
steps. Once the classical correlation functions were obtained,
their FT was calculated via the FFT method. In the case of very
high vibrational frequencies (>300 cm-1) the FT is a very small
number, and therefore very difficult to compute directly.
Following the common practice, we instead extrapolated the
exponential gap law, which was observed to emerge at low
frequencies, to higher frequencies.95,96 Assuming that this
extrapolation is the major source of error, we evaluated the error
bars reported for the VER rate constants based on the least-
squares fit to the corresponding linear frequency dependence
of the VER rate constant (on a semilog scale).

LHA-LSC-based calculations ofks, kas, and kivr start by
sampling the initial positions of all the atoms in the simulation
cell via a PIMD simulation, where 16 beads were assigned to
each atom. The PIMD simulation was started with all 16 beads
in the position of the corresponding atom in a classical
equilibrium configuration (as obtained from the classical simula-
tion described in the previous paragraphs). This was followed
by an equilibration period of 2.7 ps (Ne) or 3.6 ps (Ar) at the
desired temperatures, with the help of Nose´-Hoover chain
thermostats of length four (one thermostat for each of the three
Cartesian coordinates of each atom) and the velocity Verlet
algorithm.97 It should be noted that the initial configurations
sampled satisfied the constraint imposed by the linearity of the
triatomic molecule.84 The sampling was performed by choosing
random beads from snapshots of the isomorphic liquid of cyclic
polymers at each time step. An overall number of about 3×
105 initial configurations was used. For each of these, we

calculated the normal-mode frequencies and transformation
matrix via the Jacobi method,98 and used them in order to sample
the initial normal-mode momenta. Here too, we restrict ourselves
to normal-mode displacements that satisfy the constraints
imposed by the linearity of the triatomic molecule.84 We then
performed a classical MD simulation over 500 time steps for
each of the initial configurations, and extracted the correlation
functionsCs(t), Cas(t), andCivr(t) from them. It should be noted
that in calculating correlations functions via LHA-LSC, we can
only correlate the relevant quantities att ) 0 and at a later
time t. All of the results reported below were based on the cosine
transform of the real part of the correlation functions.85

IV. Results and Discussion

The values ofkas, ks, andkivr, as obtained via the classical
and LHA-LSC-based treatments for all six combinations of the
three solutes (CO2, CS2 and CSe2) and two solvents (argon and
neon), are given in Tables 2-7. The VER rate constantskas, ks,
andkivr for the CS2/Ar, CS2/Ne, CSe2/Ar and CSe2/Ne systems
are also shown in Figures 2-5, as a function of frequency and
on a semilog plot (the corresponding figures for the CO2/Ar
and CO2/Ne systems can be found in ref 86).

The following observations can be made based on the results
presented in Tables 2-7:

• Generally speaking, the VER rate constants predicted by
the LHA-LSC method are faster than those predicted by the
classical treatment. A similar quantum enhancement of VER
rates has been observed in other nonpolar liquid solutions and
is attributed to the ability to penetrate classically forbidden areas
on the repulsive region of the interaction potential.83-85

• The quantum enhancement factor in liquid neon is larger
than that in liquid argon. This leads to an interesting trend
reversal in the solvent dependence of VER rates between the
classical and LHA-LSC-based treatments. More specifically,
although the classical VER rates in liquid argon are faster than

TABLE 2: kas, ks, and kivr in the CO2/Ar System, as Obtained via the LHA-LSC Methoda

CO2/Ar kas/s-1 ks/s-1 kivr/s-1

classical (6( 1) × 10-15 (1.4( 0.1)× 10-1 (1.17( 0.04)× 10-2

LHA-LSC (4 ( 1) × 10-7 (1.1( 0.1)× 103 (6 ( 1) × 10-1

standard QCF (1.2( 0.2)× 10-14 (2.8( 0.2)× 10-1 (2.34( 0.08)× 10-2

harmonic QCF (2.2( 0.4)× 10-13 2.7( 0.2 0.203( 0.007
Schofield QCF (5.5( 0.9)× 10-7 (2.0( 0.1)103 75 ( 3
MHS QCF (3.5( 0.6)× 10-10 73 ( 5 3.9( 0.1

a Also shown are the corresponding predictions obtained via fully classical simulations, and by using the following QCFs (x ) âpω):87 (1)
standard:fst(x) ) 2/(1 + e-x); (2) harmonic: fh(x)) x/(1 - e-x); (3) Schofield: fSc ) ex/2; and (4) mixed harmonic/Schofield (MHS):fMHS(x) )

xxex/2/(1-e-x).

TABLE 3: Same as Table 2, for the CO2/Ne System

CO2/Ne kas/s-1 ks/s-1 kivr/s-1

classical (2.4( 0.8)× 10-19 (5 ( 1) × 10-4 (9.9( 0.8)× 10-5

LHA-LSC (1.5( 0.4)× 10-4 (1.0( 0.2)× 104 2.6( 0.4
standard QCF (5( 2) × 10-19 (1.0( 0.2)× 10-3 (2.0( 0.2)× 10-4

harmonic QCF (2.2( 0.3)× 10-17 (2.4( 0.5)× 10-2 (4.3( 0.8)× 10-3

Schofield QCF 23( 8 (1.3( 0.3)× 107 (3.4( 0.3)× 105

MHS QCF (2.2( 0.7)× 10-8 (6 ( 1) × 102 38 ( 3

TABLE 4: Same as Table 2, for the CS2/Ar System

CS2/Ar kas/s-1 ks/s-1 kivr/s-1

classical (4.8( 0.7)× 10-12 (2.26( 0.09)× 103 (8 ( 2) × 10-5

LHA-LSC (1.4( 0.6)× 10-5 (2.3( 0.3)× 105 (8 ( 3) × 10-3

standard QCF (10( 1) × 10-12 (4.5( 0.2)× 103 (1.6( 0.4)× 10-4

harmonic QCF (1.2( 0.2)× 10-10 (2.31( 0.9)× 104 (1.2( 0.3)× 10-3

Schofield QCF (1.9( 0.3)× 10-6 (3.8( 0.1)× 105 (1.9( 5) × 10-1

MHS QCF (1.5( 0.2)× 10-8 (9.3( 0.4)× 104 (1.5( 0.4)× 10-2
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these in liquid neon, the opposite is true for the LHA-LSC-
based VER rates. This implies that the reduction of the VER
rates due to the lower temperature of liquid neon is more than
compensated for by a considerably larger quantum enhancement.
This may be explained by the fact that neon has a smaller mass
than argon and that the solute-solvent interaction potentials in
the repulsive region are somewhat softer in the case of neon

than in the case of argon. This better ability to penetrate
classically forbidden areas on the repulsive region of the
interaction potential in the neon solvent gives rise to a larger
quantum enhancement. The fact that the trend reversal becomes
less pronounced with increasing mass of the terminal A atom
is also consistent with this interpretation.

• The quantum enhancement of the VER rates is clearly
pathway-dependent. The largest quantum enhancement is ob-
served in the case ofkas, followed by a significantly smaller
quantum enhancement ofks, and yet a smaller quantum

TABLE 5: Same as Table 2, for the CS2/Ne System

CS2/Ne kas/s-1 ks/s-1 kivr/s-1

classical (2.0( 0.3)× 10-14 86 ( 6 (2.3( 0.3)× 10-7

LHA-LSC (4 ( 2) × 10-3 (18 ( 3) × 105 (1.2( 0.1)× 10-1

standard QCF (4.0( 0.6)× 10-14 (1.7( 0.1)× 102 (4.6( 0.6)× 10-7

harmonic QCF (1.3( 0.2)× 10-12 (2.2( 0.2)× 103 (9 ( 1) × 10-6

Schofield QCF 2.1( 0.3 (3.3( 0.2)× 107 64 ( 8
MHS QCF (1.7( 0.3)× 10-6 (2.7( 0.2)× 105 (2.4( 0.3)× 10-2

TABLE 6: Same as Table 2, for the CSe2/Ar System

CSe2/Ar kas/s-1 ks/s-1 kivr/s-1

classical (3.1( 0.6)× 10-9 (3.2( 0.1)× 106 (4.7( 0.6)× 10-7

LHA-LSC (2.5( 0.8)× 10-4 (4.9( 0.7)× 107 (3 ( 1) × 10-6

standard QCF (6( 1) × 10-9 (6.4( 0.2)× 106 (9 ( 1) × 10-7

harmonic QCF (6( 1) × 10-8 (1.7( 0.1)× 107 (7 ( 1) × 10-6

Schofield QCF (8( 2) × 10-5 (4.7( 0.1)× 107 (8 ( 1) × 10-4

MHS QCF (2.2( 0.4)× 10-6 (2.8( 0.1)× 107 (8 ( 1) × 10-5

TABLE 7: Same as Table 2, for the CSe2/Ne System

CSe2/Ne kas/s-1 ks/s-1 kivr/s-1

classical (5( 1) × 10-10 (9.9( 0.3)× 105 (2.0( 0.8)× 10-8

LHA-LSC (2.7( 0.5)× 10-1 (1.4( 0.1)× 108 (9 ( 4) × 10-5

standard QCF (10( 2) × 10-10 (19.8( 0.6)× 105 (4.0( 2) × 10-8

harmonic QCF (2.5( 0.5)× 10-8 (1.34( 0.04)× 107 (7 ( 3) × 10-7

Schofield QCF 50( 10 (8.5( 0.3)× 108 3 ( 1
MHS QCF (1.2( 0.3)× 10-3 (1.06( 0.03)× 108 (1.4( 0.4)× 10-3

Figure 2. Classical and LHA-LSC frequency-dependent rate constants
for the symmetric stretch, asymmetric stretch, and IVR for CS2 in argon.
Calculated data are shown as solid lines. The dashed lines represent
extrapolations to the corresponding frequencies of the symmetric and
asymmetric stretches. The relevant frequencies are indicated by arrows.Figure 3. Same as Figure 2, for CS2 in neon.
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enhancement ofkivr. These differences may be attributed to the
fact that the solvent is more effective at assisting VER of the
asymmetric stretch than it is in assisting VER of the symmetric
stretch, and even less so when it comes to assisting IVR.74

• Although IVR is the preferredclassicalpathway in all of
the cases considered here, this is not the case when LHA-LSC
is used for calculating the VER rates. This is because the larger

quantum enhancement ofkas in comparison tokivr decreases the
gap between these two rate constants. In fact, the semiclassical
kas may even become faster thankivr, such that intermolecular
VER will become the preferred VER pathway, as is indeed
observed in the case of CSe2.

The first three observations reinforce similar observations
from our previous study.86 However, to the best of our
knowledge, the fourth observation represents the first reported
example of a situation where the quantum VER pathway differs
from the classical one. It is important to note that this trend
reversal relies on the third observation, according to which the
quantum enhancement of solvent-assisted IVR is orders of
magnitude weaker than that of intermolecular VER.

It is also interesting to compare the results obtained using
the LHA-LSC method to those obtained by using QCFs. In this
case, one “corrects” the classical VER rate constant by
multiplying it by a frequency-dependent QCF, that is,kj ≈
f(âpω)kj

(Cl), where j ) s,as,ivr.87 The VER rate constants
obtained by using different QCFs are reported in Tables 2-7.
The following observations can be made based on these results:

• From the four QCFs considered, the Schofield and Mixed
Harmonic-Schofield (MHS) QCFs lead to VER rate constants
that are the closest to those obtained via the LHA-LSC method.
It should be noted that the quantum enhancement of the VER
rate predicted by the Schofield and MHS QCFs is significantly
larger than that predicted by the Standard and Harmonic QCFs.

• In the case of liquid argon solutions, the values ofkas and
ks obtained by using the LHA-LSC method are closest to these
obtained by using the Schofield QCF, whereas the values of
kivr obtained by using the LHA-LSC method are closest to these
obtained by using the MHS QCF. It should be noted that the
Schofield QCF is generally larger than the MHS QCF. This
observation is therefore consistent with the fact that LHA-LSC
predicts a stronger quantum enhancement of intermolecular
VER.

• A similar trend is seen in the case of liquid neon solutions,
where LHA-LSC predicts a weaker quantum enhancement of
IVR in comparison to intermolecular VER.

• All of the QCFs point to IVR as the preferred VER pathway
in the case of CSe2/Ar, which should be contrasted with the
prediction of LHA-LSC that intermolecular VER is the preferred
pathway in this case.

• The different QCFs predict different preferred VER
pathways in the case of CSe2/Ne. More specifically, the
Schofield QCF points to intermolecular VER as the preferred
pathway (similar to the LHA-LSC method), the MHS QCF
predicts similar rates for IVR and intermolecular VER, and the
other QCFs predict that IVR is the preferred pathway.

V. Concluding Remarks

In this paper, we have shown that the preferred VER pathway
predicted via the LHA-LSC method can be different from that
predicted by the classical treatment. The example of CSe2 in
liquid argon or neon, where IVR is the preferredclassical
pathway and direct intermolecular VER to the ground state is
the preferred pathway within the framework of the LHA-LSC
method, demonstrates this point. This trend reversal originates
from the weaker quantum enhancement of solvent-assisted IVR
in comparison to intermolecular VER. It should be noted that a
similar trend is predicted by the Schofield QCF in the case of
CSe2 in liquid neon.

One may obviously question the accuracy of the LHA-LSC
method for the system considered here and its ability to capture
all relevant quantum effects. Unfortunately, addressing this

Figure 4. Same as Figure 2, for CSe2 in argon.

Figure 5. Same as Figure 2, for CSe2 in neon.
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question systematically would require a comparison to the exact
quantum-mechanical VER rate constants, which cannot be
computed for the type of system considered here. A less
systematic, yet presumably more feasible, alternative approach
could be based on comparison to experiment. However, a truly
realistic model for VER in CO2, CS2, and CSe2 will require
more accurate force fields and would have to include stretch-
to-bend VER pathways, intramolecular anharmonic coupling
terms, and higher order IVR processes. At the same time, it is
also important to note that the accuracy of the LHA-LSC method
has been demonstrated on several nontrivial benchmark prob-
lems for which the exact quantum-mechanical FFCF can be
computed, and that its predictions compared well with experi-
mental VER rates measured in other nonpolar liquid solutions.83-85

It should also be noted that the LHA-LSC methodpredictsthe
variations in quantum rate enhancement between different VER
pathways. This should be contrasted with the QCF approach,
where observing the same effect would requireassigning
different QCFs to different VER pathways. Finally, it should
be noted that although the model Hamiltonian is probably too
oversimplified for describing VER in the real CO2, CS2, and
CSe2 molecules, it is nevertheless self-consistent and therefore
sufficient for a proof-of-principle demonstration that the quan-
tum and classical VER pathways can differ.

The next step is clearly to extend the analysis to more realistic
models, so as to make it possible to perform direct comparison
to experimental data. To this end, it would be important to also
account for stretch-to-bend VER pathways, higher order IVR
processes, and polar solute-solvent interactions. The investiga-
tion of these issues is currently underway in our group and will
be reported in future publications.
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